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Abstract

We describe an efficient method for the analytical calculation of the solvent accessible surface areas and their
gradients in proteins on serial and parallel computers. We applied energy minimizations and Monte Carlo
simulations to the small three-helix bundle proteinlB. The force field consisted of the ECEPP/2 energies and

a term describing protein-solvent interaction through the solvent accessible surface area. We show that the NMR
structure is stable when refined with this force field, but large structural changes are observed in energy
minimization in vacuo. When we started from random tertiary structures with preformed helices and maintained
the helical segments by dihedral angle constraints, the final structures with the lowest energies resembled the
native fold. The root-mean-square deviations for the backbone atoms of the three helices compared to the
experimentally determined structure were 3 A to 4 A.

Keywords: Protein folding, accesible surface areas, Monte Carlo simulations, FANTOM, parallel computers, three-helix
bundle.

vent interactions makes it possible to recognize the correct

Introduction fold among other alternative folds [7].
Protein-solvent interactions have been modeled through

Anfinson’s hyphothesis that the native fold of a proteinthe accessible surface areas of individual atoms[8,9,10] which
corresponds to a state of minimal free energy [1] lead taan be calculated analytically [11,12] or numerically [13].
great efforts to establish accurate and reliable empirical forcEor efficient energy minimization and molecular dynamics
field parameters for proteins [2]. Although several force fieldcalculation the gradient of the solvent accessible surface areas
parameters have been proposed in the last two decad®sth respect to Cartesian coordinates or torsion angles has to
[3,4,5], we still cannot compute the native fold of a proteinbe calculated analytically [14,15,16]. Detailed mathematical
on the basis of energetic considerations. Apart from thelescriptions for the correct calculation of the gradient have
computational difficulty of locating the global minimum of been published recently [16].
a function with myriads of local minima, there is the problem In this paper, we show that this calculation can be further
of modelling the protein-solvent interaction. This interactionsimplified by deriving new and computationally more efficient
contributes significantly to the stability of the native fold of equations. These equations were integrated into the energy
a protein[6]. Examples of deliberately misfolded proteinsminimization and Monte Carlo simulation package FANTOM
clearly demonstrate that only the inclusion of protein- sol-[17,18]. The solvent accessible area and its gradient is

calculated twice as fast, the solvent accessible surface alone

* To whom correspondence should be addressed
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three times faster compared to our previous routine [16]. The Like other analytical calculations of the solvent accessible

procedure can also be ported efficiently to parallel computersurface area and its gradient, our method is based on the
which get more and more popular in the field of scientificglobal Gauss-Bonnet theorem for the case of intersecting

computing [19]. spheres [11,12]:

The influence of a solvation term in energy minimizations 0 .
and Monte Carlo simulations has been described for a few, _ .2
proteins: bovine pancreatic trypsin inhibitor (BPTI) [20,21], AT QTDHA:ZLF)QA'A” +A§:OSOEDE
a-amylase inhibitor (Tendamistat) [21], and avian pancreatic
polypeptide [22]. We have shown [21] that atomic solvation  The solvent accessible surface of atom i is enclosed by p
parameters based on a simple polar/nonpolar classification @fitersecting arcs with other spheres. The variabfesco®©
atoms drive perturbed NMR structures of BPTI andand® are defined as in Fig.2 and Fig.3.

Tendamistat back to the native structures. In contrast,
calculations with previously published parameters [9,15] did
not correct the perturbations.

We have now applied our parameters in a folding study of
the three-helix bundlerELO. Similar to other studies [23,24]
our primary interest is the correct packing and not the
formation of helical regions. Therefore the helical regions
determined by NMR were specified by dihedral angle
constraints in all calculations. Starting from random tertiary
structures, the three structures with lowest energies obtained
by Monte Carlo simulations including hydrophobic surface
terms have the correct fold.

)

Figure 2: The solvent accessible surface of atom i is enclosed
Calculation of the solvent accessible surface area and its by a certain number of arck which are parts of the diffe-
gradient rent intersection circles with other atoms and meet in the

common intersection point® is the angle between the two
In the continuum approximation the protein-solvent interactionangential vectors in these point®, is the angle defining

Ehyd is computed by the arc length anghy is the radius of the intersection circle.
Enya = D OiAA )
i=1latoms

where A is the solvent accessible surface area (Fig. 1) of
atom i andoj is a “solvation-parameter” [8,9,10] depending
on the atom type.

Figure 3: The vectorP, from the origin (center of atom i)

to the common intersection point of the atoms i, k and j can
be decomposed into three orthogonal vecimps, fv and

Y.

The analytical calculation ofjfand its derivatives with
Fig. 1: Definition of the solvent accessible surface. A sphereespect to the coordinates of the intersecting spheres is dif-
with a radius of 1.4 A representing a water molecule is rolledferent from previous work. Compared to Connolly’s approach
over the van der Waals surface of the protein. Atoms locatefil1], we chose a different representation of the intersection
in cavities (dark grey) are not touched and thereforepoints, and we will give explicit formula for the derivatives.
considered as buried. The procedure is equivalent toln contrast to Richmond’s approach [12] we chose Cartesian
calculating the protein surface where 1.4 A have been addedoordinates rather than polar coordinates in multiple rotated
to the van der Waals radii of all atoms. frames.
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We set the sphere i, which is cut by two other spheres, k o= 00V
and j, in the origin of the coordinate system. The center of W=HLV
any other sphere k is then determined by the vecto

X = (x', %%, x*) with |%|=d,. The sphere radius is
rk- The three spheres intersect in the two poitsand P,
which can be decomposed into three orthogonal vectors:

P =0p+pU+y 0 )

a, B, y; andy, are scalars andi,v,w are orthonormal
vectors. The vectofl points from the center of sphere i to
sphere k andy is orthogonal toji, pointing to sphere j
(Fig. 3). Note thayl= -2 and thereforeP, = B, -2y ;& .

For convenience we introducg,ghe distance from the

The.gyphol £ denstes i e EPaBiBRoWe' ey ne Htvati-
ves of B,and P, with respect to the coordinates of spheres k
andj. Asa, B, iand v are not symmetric with respect to the
spheres k and j, their derivatives with respect to the coordinates
of k and j are different. One could also use the same formulas

as above by exchanging k and j. Then, howeveB, | and

v would have to be recalculated.

First, we calculate the derivative of the intersection points
with respect to the coordinates of sphere k. The derivatives of
all the scalarsi, 3 andy and all the vectorgi, v and @ in
(3) have to be considered. We will use the short hand notation

center of sphere i to the center of the intersection circle with P

sphere k and the angiebetween the vectorsX; and X, :

_dg+r®-rd
Ok = 2d, (4)
X% _Xj
cosh = =
* 44 "a " 5)

The scalarsa, (3, y can be obtained by solving the
equations describing the intersection points:

}

(% - )z =
g _ D - 2
(Xk|32 ) _ :Ikz (6)

Using the relationst? =d/, %2 =d2, %V =0, %®=0
and X;w=0 |eads to
O =gy
B= Siiq) (g; = Ok COS¢) 7)
Yi2 =% > —a?-p?

The vectorsji and ¢ are readily obtained ang has to
be constructed as being perpendiculagito

TR

H d,

.1 OX; O

V= Sing a1, MY ®)

= ax™ to keep the equations concise.
k

BecausedX; =0 anddd; =0 the derivatives ofidand cog
are:

(9)
(10)

Becaus@<mwe havesing =,/1-(cosp)” ; thus the deriva-
tive of sinp can be related to the derivative of ¢os

asing = —Ebs[i—?:i) gacosqn (112)

With equations (9), (10) and (11), the derivativest o and
y are easily obtained:

—A3q = F\sz"'riz_rkz[l:[uk_gk[l
da =g, aH 20, % E a Eﬁdk (12)
1 .
o= W[—agk cosp ~ 9,0 co® —po sinp] (13)
Oy, = 0Fkyr? —a? -B2f= —yi(aaa +BOB) (14
1,2

In eq. (13) we introducefl as previously calculated by
equation (7).
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or “exit” points. These are the points where one enters or
leaves the buried arc when moving on the oriented

For the vectors, we get

B, 0O . o . .
1.1 1m 0 intersection circle. In Fig. 4,P, is an exit point of the
OH=—H+—[DO, 0 (15) intersection circle k.

dd dy
‘ Bamb

where the m in the Kronecker-symbol indicates the component

of %,/ M- L .
*fhe derivative of y is calculated analogously 3 :

v = ﬁ[—na cosp —dfi cog —Vd sirp] (16) ;rcﬁ—ﬂci?%}}j;lgg TN

Finally, & is obtained by:

06 = 0fi OV + [ 09V (17)

For the calculation of the gradients with respect to the
i ' ill give the final i . S - .
coordinates of sphere j we will give the final equations byFlgure 4: Atom i lies in the origin and is cut by the atoms k

using the notatiord ; :im_ and j. Positively oriented tangential vectors are drawn in
Xj the intersection pointg, andP,. Both, ® and Q can be
9.a=0 (18) calculated as scalar products of these vectors. In this dra-
J

wing, ®* is the complementary angle of (P=2T-®*).

1 :
0B = M[ai 9j ~ %0 cos¢ o, qu’] (19) As the angle of the accessible part of the intersection
circle ® can be larger tham, the scalar product of the tan-
d.y=- i(sa 'B) (20) gential vectorsﬁij(l? and ﬁmf can be eitherd or the
: Y . complementary angl@*=21-®. To distinguish between the

The derivative offl vanishes and for the vectofsand
» we find:

two angles, we have to introduce a new vegfor

=) ol

(24)
.1 0 mxO O
0jV=——-100 %—ijw—szmm (1) . R o
sing g i H If d<m this vector will point in the same direction &g .
The scalar product of; with X, will therefore determine
the calculation ofp:
djw=p0o;v (22) s=hix
With the equations for the intersection points and their
derivatives, we can now calculate the value¢ds and Q O acos (ﬁ(l) [ﬁ(z)) s>0
; o O ik = Yk =
needed by the Gauss-Bonnet formula. As illustrated in Fig. 4, ®=0
® andQ can be easily obtained through the tangential vectors p-acos (ﬁi(k? [ﬁl((jz)) s<0 (25)
ﬁij(kp) in the intersection points.
The cosine of the polar ang&can be calculated directly
as the distance from the center of sphere i to the center of tifé ¢&n not be larger tham thus
intersection circle k ist and [P| =T :
~(1 1]
_a Q =acos (ni(kj) Dr\j(k)) (26)
cosO = — (23)

fi

For the tangential vectorﬁj(kp) , we will use the following The tangential vectors themselves can be calculated with

notation: The three indices ijk label the three spheres whickn€ intersection point®, and P, which we have previously
intersect in the considered point. The first two indices, i and jcalculated:

give the intersection circle to which the vector is tangential. iop
The number of the intersection point p (1 or 2) is written in ﬁi(kjLz) 12
superscript. The intersection points can be classified as “entry” ri Sin@

(27)
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L= In a first step, a list of intersecting atoms k are generated

12 _ X Uho f i A hose i ion circles with i

A ” = ———— 28) or every atom i .toms whose intersection circles wit i are
djr sin® entirely contained in another one are removed from the list at

For the calculation of the gradient of the solvation energythis early stage. The number of atoms in this intersection list

(1), we need the derivative of every solvent accessible sufs only dependant on the average packing density of the protein
oA and not on the overall size of the protein. Thus, the major part

face A with respect to all atom coordinates. The magiX’.  of the CPU time needed for the calculations increases linearly

is, however, sparse, as only those derivatives are differenyith the size of the protein.

from zero where the sphere k does cut the sphere i. From the In a second step, the existing intersection points of the
Gauss-Bonnet theorem (2) we have atoms i, k and j are calculated with equations (7) and (8). As

(29) every intersection point is either an “entry” or an “exit” point
on the oriented intersection circle k, it is easy to determine
which points (if any) delimit an accessible arc on this circle

oA _ rz% Mpn , ¢ 0codO D+ cos@a—eB and which points are buried.
0%y B Xk aFp 0% ATp X 5 Finally, we can calculate all values needed for the Gauss-

Bonnet formula in equations (2) and (29) for each of these
arcsA. An arch of the intersection circle is delimited by two
If the sphere k has only one accessiblehana sphere i, ~ points R and P, where j and m are typically two diffe-
the first sum contains two terms (angles at the start and en@nt atoms. These two intersection points and their derivati-
of the arc), the second sum only one term @adgpends Vves can be calculated by the same equations as j and m are
only on k) and the last sum three terms (hef the arca\-1 mathematically analogous.

andA+1 do also depend on the location of sphere k). The calculated accessible areas and gradients have been
Again, we will first calculate the derivatives with respect extensively tested with values obtained with the previous
) . 9 FANTOM routine SAREA [16]. We have also compared the
to k using the notatiog = — analytical to the numerical gradient for different structures.
0% All values agreed within the accuracy of the numerical gradient
(Table 1).

For the main terms in (29), we get:
Table 1: CPU times and accuracy of PARAREA in the

calculation of the solvent accessible surface and the gradient

1 (@) (), =() o= i
00=— (aniﬁj) Dﬁj(k) + rhgj) D ikﬂ)) (30)  for Tendamistafa]
P Computer CPU [sec] CPU [sec] D(Ry)b]
0C0sO = — (31) Area Area & Gradient
fi
0® = dacos (ﬁi%) Eﬁ&f)) Sun Sparc/2 11 14 1.32*19)
1 ) Cray Y-MP 0.78 1.13 1.32*18
= ol @ + ) jrﬁf)] 32 paragon [c] 0.46 0.52 1.32*10-6

Note that the formula fab is given for the case that s>0 [8] All 558 heavy atoms of the protein Tendamistat
(see above). For s<0, the formula has to be multiplied by -1(74 residues) were included. _ _
The derivatives of the tangential vectors given in (27) andPl Relative difference of the numerical gradient to the

(28) can again be expressed by previously calculated termanalytical gradient. We used a displacement oft #ofor the
calculation of the numerical gradient.

[c] 30 slave processors were used for this calculation.
Implementation in FANTOM

We have integrated the calculation of surface areas and their

gradients into the program FANTOM version 3.5. The newParallel computers

Fortran routine PARAREA replaces the previous routine

SAREA [16] and performs all calculations using the atomPARAREA was also ported to an Intel Paragon distributed

coordinates and radii as input [25]. memory parallel computer. The calculations of the individual
solvent accessible surfaces and their gradients are intrinsically
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parallel as every atom can be treated separately provided dblding studies with B-10

coordinates and radii of the other atoms are known. The _ . _ _
available processors are divided into n-1 “slave” processor§Oomputational details. For our folding studies, we have used

which perform the computations and one “master” processoi€ pheromone =10 from the ciliated protozoaBuplotes
which sends the initial data to the slaves and calculates tH&ikovi. The tertiary structure of this protein was solved by
solvation energy and it's gradient as soon as the results alMR spectroscopy [26]. It has 38 amino acid residues and
sent back by the slaves. Therefore, in a protein with M atomds folded in a three-helix bundle which is stabilized by three
every slave processor calculates the solvent accessible surfde¥s-Cys disulfide bridges between residues 3-19, 10-37 and
of M/(n-1) atoms. 15-27. We used model 1 of the atomic coordinate file 1IERP
As some parts of the protein might be buried and requirén the Brookhaven Protein Data Bank [27] as NMR reference
much less CPU time, assigning equal sequential fragments §fructure. All root-mean-square deviations (rmsd) of the
the protein to every slave processor would yield a bad loafalculated structures are given for the backbone atoms in
balance. We achieved an almost optimal load balance b@e helical regions with respect to this reference structure.
assigning every (n-1)th atom to the same slave processor. We did not restrain the disulfide bridges in our study,
The CPU times needed for 50 minimization steps of th&ut the helices were already formed in the initial unfolded
protein E-10 (38 residues) with and without solvation energyStructures. We assigned the segments 2-8, 12-18, and 24-32
term (Figure 5) show that the solvation energy does no@S helices based on the NMR work [26] with the exception
dominate the calculations any more as soon as a few processgfgesidues 19 and 33 which havengles largely deviating
are used. With one processor the calculation of the solvatiofiom the typicala-helical value. The backbone dihedral
energy needs 67% of the total CPU time. With 20 slave
processors it drops to 22%. These fractions decrease v
increasing protein size. They are 59% and 10% for Tendamis A

(74 residues). ) ] )
The fastest algorithm for the calculation of the accessik

surface area, MSEED [14], has been reported to have sim
properties. The CPU time needed for the calculation of tl
solvation energy was 59% of the total CPU time in a min
mization of the 5 residue peptide Met-enkephalin. Howeve
MSEED'’s search for accessible intersection points on tl
protein surface is a recursive algorithm which makes

S
efficient parallelization very difficult. Furthermore, it does :

not take into account internal cavities or intersection circle 200 ; ‘ : : : - o

2 4 4 B

Energy [keal/mol]

—
———
L I L

Rmsd (4)

8
=

"]
3

CPU time [sec]
[
(=]
b=t

Energy [keal/mol]

2, 4 [ 8 10 12 14 16

Number of slave processors Rmsd (4)

which are not cut by a third sphere. Both points could lead t&igure 6: Energy minimizations of NMR structures (dashed
problems during the minimization of unfolded structures. lines) and unfolded structures (full lines) with the ECEPP/2

force field alone (A) and the ECEPP/2 force field including

a highly weighted hydrophobic energy term (B). Every line
Figure 5: CPU times on the Intel Paragon computer neededconnects the initial structure (high energy) to the final
for 50 energy minimization steps including the solvation termstructure after 500 minimization steps (lower energy). The
of an unfolded Er-10 protein. The dashed line refers to armsd values have been calculated with respect to the three
corresponding energy minimization in vacuo. helices of the NMR reference structure.
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angles of the residues in the helices were restrained tstructure. All energy minimizations were repeated with the
-720<d<-420 and -62<W<-320 in all calculations. ECEPP/2 potential in vacuo.

An ensemble of 25 initial, unfolded structures with  As a second method to locate low energy conformations
preformed helices were generated by the distance geometwye applied the combination of Monte Carlo simulation and
program DIANA [28]. Restrained energy minimizations with energy minimization of Li and Scheraga [29] modified with
the helical dihedral angle constraints were then performedn adaptive temperature schedule [18]. We chose 10 structures
with the program package FANTOM [17,18], using the APO-of the 25 initial DIANA structures which had rmsd values
LAR solvation parameters defined in our previous work [21].ranging from 6 A to 11 A. 160 Monte Carlo steps using the
The solvation parameters were set to 1 kcal motA—2 Metropolis criterion were performed with 50 energy
for carbon and sulphur atoms and to zero for all other atomsninimizations each. The energy function was the same as des-

The sulphur atoms of cysteines were defined asribed above. Only the backbone angbemndW¥ of the 7 loop
hydrophobic to favour the burying of the cysteines in theresidues located between the helices were selected to be va-
protein core. The van der Waals radii were taken fromriable in the Monte Carlo step and only one angle was changed
Table 2 of the work of Shrake and Rupley [13]. every step. During the first 80 steps, every angle could change

Energy minimizations consisted of 500 iteration steps ofwithin a range of 18®to allow large structural modifications.
the conjugate gradient method. We have used a 8 A cutofburing the second 80 steps this range was lowered @0 30
value for the nonbonded interaction list which was updated’he adaptive temperature schedule [18] during the Monte Car-
every 10 minimization steps. The parameters for thdo simulations was as follows: The initial temperature of 300
minimization o, p and T were set to 0.4, 0.4 and 0.1, K was lowered to 5 K every time a conformation with lower
respectively. To avoid singularities in the ECEPP/2 forceenergy was found or raised by 500 K if no conformation with
field we used a smoothed Lennard-Jones potential folower energy was found within the last 10 Monte Carlo steps.
nonbonded distances smaller than 2.0 A. The dielectric Finally, the Monte Carlo structures were minimized to a
constant was set to be proportional to interatomic distance$ocal minirpum with reduced protein-solvent parameters of

We also performed the same calculations starting fron25 cal mol A=2 for the carbon and sulphur atoms. These
10 unrefined NMR structures which had backbone rmsdralues correspond to standard estimates of the hydrophobic
values of less than 0.5 A compared to the NMR referenceontribution to the protein solvation energy based on studies

Figure 7: The NMR structure (red) is superimposed to thewith hydrocarbons [30]. The structures were assumed to be in
structure which reached the lowest energy when the 1@ local minimum, if their energies did not decrease more than
unrefined NMR structures were minimized with a highly0.1% or 104 kcal mot-L in the last 50 minimization steps.
weighted protein-solvent interaction (green). Neither the Depending on the structure, 600 to 4000 minimization steps
NMR constraints nor the information on the disulfide bridgeswere necessary. Three of the energy refined NMR structures
were used during the minimization. The largest changesvere minimized with the same potential to obtain reference
occurred in the C-terminal region of the protein which is value.

stabilized by a disulfide bridge in the native structure. The

picture was prepared with the program MidasP|3§].
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Results of the energy minimizations. which have lower rmsd values, also have significantly lower
energy values.
Figure 6 illustrates the effects of the minimizations on the
structures. The structures, minimized with the ECEPP/2 enerdyesults of the Monte Carlo simulations.
alone, did not change towards the native structure, even though
their energy values dropped considerably. In contrast, allThe Monte Carlo simulations with the adaptive temperature
structures minimized with the protein-solvent interactionschedule [18,29] produced structures which resemble the na-
significantly improved their rmsd values compared to the NMRiive Er-10 structure. The three structures with the lowest
reference structure. These values, which initially ranged fronenergies have the correct three-helix topology and small rmsd
6.6 Ato 11.3 A, dropped to 4.5 Ato 7.8 A. values of 4.7 A, 3.8 A and 3.0 A (Table 2). The quality of
A drastic difference can also be observed in the energthese three structures is illustrated in Fig.8. The comparison
minimizations of 10 unrefined NMR structures. In the mini- of the rmsd values before and after the simulation shows
mization with the protein-solvent interaction all 10 structuresthat all structures improved their accuracy.
stayed near the native structure with a maximal rmsd value of The lowest energy reached in the Monte Carlo simulations
1.8 A. The most significant changes occurred in the C-terminalvas -121 kcal mal. In contrast, the energy minimizations
loop which is fixed by a disulfide bridge in the native structurestarting from the three NMR structures yielded structures
(Fig. 7). In thevacuominimization two structures partially with energies less than -160 kcal moT his significant gap
unfolded to rmsd values above 4 A. is mostly due to the much lower Lennard-Jones energies of
We did not expect a correlation between the final energiethe NMR structures. The energy differences between
of the structures calculated with the protein-solvent interactiorstructures with the correct fold and other compact structures
and the rmsd values (Fig.6B). The energy surface of a protein
contains myriads of local minima. Even in small polypeptidesrigure 8 (next page):The three Monte Carlo structures
the local minima of more than 2 kcal/mol above the global(green) with the energies (A) -121 kcal/mol, (B) -94 kcal/
energy minimum show a highly complex dependence betweemol and (C) -93 kcal/mol of Table 2 are superimposed with
the energy and the rmsd value, as we have shown in ahe NMR structure (red) in the helix regions. All three Monte
exhaustive study of local minima in Met-enkephalin [18]. Carlo structures have the correct three-helix bundle
However, we observed that the energy refined NMR structure®pology. The picture was prepared with the program
MidasPlus [33].

Table 2: A comparison of structures
Energy [a] [kcal/mol] Rmsd [b] [A] obtained by Monte Carlo

Total  Elect. H-bond Lenn. Solv. Torsn.  Start End simulations and energy minimized
NMR structures

Monte Carlo structures:

-121 45 -47 -218 46 53 6.9 4.7
-94 30 -46 -186 52 56 115 3.9
-93 22 -48 -180 46 66 8.6 3.0
-91 56 -45 -198 48 47 7.8 6.8
-84 55 -41 -192 43 51 8.8 5.5
-82 66 -47 -189 47 40 11.3 7.0
-72 69 -46 -192 41 56 7.6 5.1
-66 88 -42 -211 46 53 6.6 5.0
-52 96 -46 -197 45 50 7.1 5.4 [a] Standard ECEPP/2 energies
-45 68 -44 -182 46 66 10.2 7.1 (electric, hydrogen-bond, Lennard-

Jones and torsion energies) plus
protein-solvent interaction energy.

Minimized NMR structures: [b] Root-mean-square deviations

-172 51 -53 -246 42 35 0.3 1.0 measured for all backbone atoms
-170 53 -48 -247 43 30 0.5 1.3 located in the three helices
-162 54 -50 244 41 36 0.3 0.7 compared to the NMR reference

structure.
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are more subtle, e.g. between the third and fourth structure .
Table 2. In that respect-H0 might not be a simple test protein,

as itis known that it has a large solvent exposed apolar surfaée
area [26]. There is a major difficulty in obtaining structures
with rmsd values below 2 A when starting from unfolded 7.
structures. The problem seems to be to pack the residue side-
chains correctly in the hydrophobic core. We may have t@.
incorporate specific algorithms [23,31] into our method to09.
overcome this problem.

10.

Conclusions 11.

12.
We have shown that energy minimizations and Monte Carld.3.
simulations with highly weighted protein-solvent interactions 14.

can fold the three helices of #0 from an unfolded state to
the native state. The correct topology can be identified through

the lowest total energy values including a protein-solventl5.
interaction derived from standard estimates of the hydrophobit6.

effect. The total energy function clearly favours the native

fold. This result is not a simple consequence of compactnessy.

as even with given three helical segments there exist many

different compact folds. 18.

We cannot justify the high weight of the protein-solvent

interaction used in the first step of our calculations from ex-19.

perimental calorimetric data [6]. Compared to a three-dimen-

sional profile method [32], which is based on pure statistical0.

observations in native protein structures, or exponential

decaying potential functions for the hydrophobic interaction21.

[24], our method captures the observed dependency of the

hydrophobic effect from the accessible surface area [6]. It ha®2.

two major advantages: it removes low energy local minima

for unfolded structures and therefore drives the structure3.
towards a folded state and it favours burying of nonpolar sid@4.
chains. 25.
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